
1

Model Fitting with Distributed Data

Balasubramanian Narasimhan

Department of Biomedical Data Sciences
and

Department of Statistics
Stanford University

January 10, 2018

2

Introduction

Combining data from distributed institutional databases promises
many advantages in personalizing medical care.

▶ Reliable and stable modeling of outcomes
▶ Larger N
▶ Precision of estimates
▶ Power for detecting differences

▶ Richer feature sets for use in models
▶ More chance for finding “patients like me”

3

Introduction…

Registries also essentially perform this centralization.
▶ Data is aggreated at a central site, typically at periodic

intervals
▶ Generally, data is anonymized for analysis
▶ Examples: Surveillance, Epidemiology, and End Results

(SEER) Program; The Center for International Blood and
Marrow Transplant Research (CIBMTR); etc.

4

The Problem

There are high (and growing) barriers to aggregation of medical
data, particularly between centers/researchers.

▶ Lack of standardization of ontologies
▶ Privacy concerns
▶ Reluctance to cede control (once flown...)
▶ Proprietary attitude towards institution’s data

Some efforts have been very costly and yielded few results.

5

Data Aggregation is not always necessary

▶ Data can stay at site (so sharing can be turned on/off)
▶ Computations can be distributed (also can be turned on/off)

Many computations that form the crux of model fitting can be so
implemented:

▶ Maximizing a likelihood. Intermediate computations break up
into sums of quantities computed on local data at sites.

▶ Singular Value Decomposition. Iterative algorithms are
available for computing singular values using quantities
computed on local data at sites.

▶ And more.
Indeed, sometimes distribution of the calculation among sites is
necessary to share a heavy computational burden.

6

Some Approaches

▶ Jiang et. al.(Bioinformatics 2013) describe the WebGLORE:
Web-based Grid LOgistic REgression service that enables
privacy-preserving logistic model fit from distributed datasets.
Only transfers aggregated local statistics (from participants)
through Hypertext Transfer Protocol Secure (HTTPS) to a
trusted server, where the global model is constructed.
URL:
http://dbmi-engine.ucsd.edu/webglore3/WebGLORE

▶ Wolfson, et. al.(IJE, 2010) describe fitting generalized linear
models (GLMs) by aggregating anonymous summary-statistics
from harmonized individual-level databases (DataSHIELD).
The project is part of the OPAL software suite of stand-alone
applications that support various study’s data management
activities.

http://dbmi-engine.ucsd.edu/webglore3/WebGLORE

7

Open Distributed Computation

Advances in open source software have made open distributed
computing very accessible

▶ R is a widely used platform that has a rich set of libraries for
all manner of statistical computation and model fitting. So
distributed algorithms can be implemented in R packages in a
straighforward manner

▶ The opencpu R package exposes R’s functions over a REST
Application Programming Interface: R functions can be
invoked using a URL.

▶ The shiny R package enables one to provide friendly user
interface to users

8

Assumptions

Our initial assumptions are:
▶ Transmitting summaries between is ok
▶ Some degree of trust between sites (via agreements between

CIOs etc.)
Note that the master process can make an unlimited number of
function calls on the worker sites. Therefore, this needs to be
combined with some auditing mechanism.

9

Row-partitioned data

Y = Yn×1 X = Xn×p

Y1 = Yn1×1 X1 = Xn1×p Site 1

Y2 = Yn2×1 X2 = Xn1×p Site 2

Y3 = Yn2×1 X3 = Xn3×p Site 3

Y4 = Yn4×1 X4 = Xn1×p Site 4

Figure: Left: Aggregated data. Right: Distributed Data

10

Communication Topology

A commonly used topology is the star network.

In a star network, a single node runs a master process that
communicates with other nodes in the network that are clients.
The final results are available at the master.

11

Possible Computations

It turns out that many computations can be done in a star network
using row-partitioned data.
Generalized Linear Models The overall likelihood, score and

information matrices are all sums of the respective
quantities over sites. Therefore a master process can
perform the iterations for maximization.

Iterative Computations It may be necessary for intermediate results
to be stored in the clients (stateful) iterative process.

And more.

12

Site Stratified Cox Model
The Cox PH model assumes a hazard function of the form

λn×1(t) = λ0(t) exp(XXXn×pβp×1),

Model fitting and inference is accomplished by maximizing a partial
likelihood function (see Therneau and Grambsch) of the form:

l(β|XXX) =
n∑

i=1

∫ ∞

0

[
Yi(t)XXXi(t)β − log

(∑
j

Yj(t)rj(β, t)
)]

dNi(t).

In multicenter studies, the stratified Cox model is often used where
each site is a stratum. This allows for different a baseline hazard
for each site, yet a single β is fit.
It turns out again that the overall log-likelihood is a sum over the
strata. Same for score, information matrix etc. So once again the
computation can be distributed.

13

Maximization via Newton-Raphson

K sites, lk(β), Sk(β), Ik(β) are site-specific likelihood, score and
information matrix.

0. Set i = 0, β0 = 0, a tolerance ϵ and a maximum
number of iterations B.

1. Transmit βi to each site
2. Each site k sends back lk(βi), Sk(βi) and I(βi)

3. Compute l(βi) =
∑K

k=1 l(β), S(βi) =
∑K

k=1 Sk(βi),
I(βi) =

∑K
k=1 Ik(βi),

4. Set
βi+1 = βi + I−1(βi)S(βi)

5. Stop if converged or iteration count exceeded. Else
increment i and repeat step 1.

For the Cox Model, the convergence is very fast.

14

Schematic

Site 1
Data: X1

Summaries:

l1(b) = l(X1, b),
S1(b) = l01(X1, b),

I1(b) = �S0
1(X1, b)

Site 2
Data: X2

Summaries:

l2(b) = l(X2, b),
S2(b) = l02(X2, b),

I2(b) = �S0
2(X2, b)

Master Site
b = 0

Iterate to convergence:

S = Â Si(b), I = Â Ii(b)
bi+1 = bi + I�1S

Site 3
Data: X3

Summaries:

l3(b) = l(X3, b),
S3(b) = l03(X3, b),

I3(b) = �S0
3(X3, b)

Site 4
Data: X4

Summaries:

l4(b) = l(X4, b),
S4(b) = l04(X4, b),

I4(b) = �S0
4(X4, b)

b
l1 (b), S

1 (b), I1 (b)

b
l 2(

b)
, S 2(

b)
, I 2(

b)

b
l 3(

b)
, S 3(

b)
, I 3(

b) b
l4 (b), S

4 (b), I4 (b)

15

Singular Value Decomposition
The SVD of XXXn×p, is UUU, VVV, DDD such that

XXX = UUUDDDVVV⊤, UUU⊤UUU = I, VVV⊤VVV = I, and DDD is diagonal.

▶ Decomposes the variance of XXX into what are called principal
components.

▶ v1, the first column of VVV, the first principal component of X
maximizes of var(XXXv).

▶ u1 indicates how much of factor v1 is present in each
observation.

▶ d2
1/

∑
j d2

j is the proportion of the variance of XXX that can be
explained by v1.

▶ The first k vectors can used to get a k approximation to XXX.
Efficient Implementations in LAPACK, which much software builds
upon.

16

There is a well-known power method for computing a singular
vector corresponding to the largest eigenvalue.
Data: XXX ∈ Rn×p

Result: u ∈ Rn, v ∈ Rp, and d > 0
u← (1√n ,

1√n , . . . ,
1√n);

repeat
v← XXX⊤u;
v← v/∥v∥;
u← XXXv;
d← ∥u∥;
u← u/∥u∥;

until convergence;
Note that the operations involve inner products and sums and
therefore distribute over sites.
Singular vectors can be found successively by removing the effect
of the top singular vector and then finding the rank k− 1
approximation again.

17

Privacy-preserving rank-k SVD
Data: each site has private data XXXj ∈ R

nj×p

Result: V ∈ Rp×k, and d1 ≥ . . . dk ≥ 0
V← 0, d← 0 foreach site j do

U[j] = 0;
transmit nj to master;

end
for i← 1 to k do

foreach site j do u[j] ← (1, 1, . . . , 1) of length nj;
∥u∥ ←

√∑
j nj;

transmit ∥u∥, V, and D to sites;
repeat

foreach site j do
u[j] ← u[j]/∥u∥;
calculate v[j] ← (XXX[j] − U[j]DV⊤)⊤u[j];
transmit v[j] to master;

end
v←

∑
j v[j]; v← v/∥v∥;

transmit v to sites;
foreach site j do

calculate u[j] ← XXX[j]v;
transmit ∥u[j]∥ to master;

end
∥u∥ ←

∑
j ∥u

[j]∥;
transmit ∥u∥ to sites;
di ← ∥u∥;

until convergence;
V← cbind(V, v);
foreach site j do U[j] ← cbind(U[j], u[j]);

end

18

The Tools

To enable such computations (and others that might be
developed) in a distributed way, one needs

▶ Readily available computing power (a unix server box).
▶ An extensible, open source environment (R) to implement

such tools and algorithms (our package distcomp)
▶ Tools to propose, define and refine computation tasks (R

package shiny, R package opencpu)
▶ Secure means of exposing computation to site—we’ve all

become HIPAA-etrified! (SSL)
▶ Auditing mechanisms to provide reports to satisfy center CIO

so that there is a trail (Logs/Dashboards)
There are several social aspects of the collaboration need to be
engineered.

19

Workflow

The main steps are the following.
1. Define the Computation
2. Set up a Worker Process for the Computation
3. Set up a Master Process for the Computation
4. Run the Computation

We address each in turn.

20

1. Defining the Computation

Shiny App

Computation Type

Exemplar Data

Computation-specific
 Parameters

Definition file
(defn.rds)

defineNewComputation()

Requirements: R, distcomp package

Stratified Cox Model
Rank k SVD

A computation may be defined on any machine where R and the
distcomp package are installed.
The function defineNewComputation() launches a shiny app
that leads the user through the process.
The end result is an R data file unambiguously defining the
computation instance for distcomp.

21

Example: UIS dataset
Hosmer and Lemeshow data on time until return to drug use for
patients enrolled in two different residential treatment programs.
Aggregated fit is:
> uis <- readRDS("uis.RDS")
> coxOrig <- coxph(formula = Surv(time, censor) ~ age + becktota +
+ ndrugfp1 + ndrugfp2 + ivhx3 +
+ race + treat + strata(site), data = uis)
> summary(coxOrig)
Call:
coxph(formula = Surv(time, censor) ~ age + becktota + ndrugfp1 +
ndrugfp2 + ivhx3 + race + treat + strata(site), data = uis)

n= 575, number of events= 464
(53 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|z|)
age -0.028076 0.972315 0.008131 -3.453 0.000554 ***
becktota 0.009146 1.009187 0.004991 1.832 0.066914 .
ndrugfp1 -0.521973 0.593349 0.124424 -4.195 2.73e-05 ***
ndrugfp2 -0.194178 0.823512 0.048252 -4.024 5.72e-05 ***
ivhx3TRUE 0.263634 1.301652 0.108243 2.436 0.014868 *
race -0.240021 0.786611 0.115632 -2.076 0.037920 *
treat -0.212616 0.808466 0.093747 -2.268 0.023331 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
...

22

The Distributed Analog

Assuming that the UIS dataset is row-partitioned as noted earlier
into the two sites, we show how one would perform the distributed
model fit in the next few screenshots.

23

1.1 Screenshot

24

1.2 Screenshot

25

1.3 Screenshot

26

2. Setting up Worker

Shiny App

OpenCPU URL

Site Data

Definition file (defn.rds) Site ready

setupSlave()

▶ Requires a one-time configuration of an opencpu server
▶ R package distcomp and a writable workspace
▶ All interaction is through a shiny app that configures the

worker for the computation
Repeat for each site.

27

2.1 Screenshot

28

2.2 Screenshot

29

2.3 Screenshot

30

3. Setting up Master

Shiny AppDefinition file (.RDS)

Site URLS
R script

setupMaster()

▶ Specification of computation definition
▶ Specification of Worker URLs
▶ Writes out R code that can be executed

31

3.1 Screenshot

32

3.2 Screenshot

33

3.3 Screenshot

34

The Distributed Cox Fit

The code produced in the master setup is:
library(distcomp)
defn <- structure(list(id = "ae2be5012430150b", compType = "StratifiedCoxModel",

projectName = "STCoxTest", projectDesc = "Stratified Cox Test",
formula = "Surv(time, censor) ~ age + becktota + ndrugfp1 + ndrugfp2 + ivhx3 + race + treat"),

.Names = c("id",
"compType", "projectName", "projectDesc", "formula"), row.names = c(NA,
-1L), class = "data.frame")
sites <-
structure(c("http://127.0.0.1:3978/ocpu", "http://127.0.0.1:3978/ocpu"
), .Names = c("site1", "site2"))
siteDataFiles <-
c("site1.rds", "site2.rds")
siteNames <-
c("site1", "site2")
master <- coxMaster$new(defnId = defn$id, formula=defn$formula, localServer=TRUE)
for (i in seq.int(length(sites))) {

master$addSite(siteNames[i], sites[i], dataFileName=siteDataFiles[i])
}
result <- master$run()
print(master$summary())

35

The Cox Output
If you run that program, after a while, it spits out the following:

coef exp(coef) se(coef) z p
1 -0.0280495 0.97234 0.0081301 -3.4501 5.6041e-04
2 0.0091441 1.00919 0.0049918 1.8318 6.6979e-02
3 -0.5219296 0.59337 0.1244240 -4.1948 2.7315e-05
4 -0.1941709 0.82352 0.0482507 -4.0242 5.7168e-05
5 0.2636376 1.30166 0.1082448 2.4356 1.4868e-02
6 -0.2400609 0.78658 0.1156319 -2.0761 3.7887e-02
7 -0.2125720 0.80850 0.0937466 -2.2675 2.3359e-02

As can be seen, the results are similar to the original model fit.
We have successfully tested examples and deployed distcomp at
real sites for fitting survival models with breast cancer registries.
Stanford, Vanderbilt, Mt. Sinai and Oxford with breast cancer data.
We also have collaborations between Stanford and Palo Alto
Medical Foundation underway.

36

Example: SVD Computation

Simulated dataset on three sites, 20× 5 matrix at each site.
Aggregated SVD is:
> set.seed(12345)
> x <- matrix(rnorm(100), nrow = 20))
> svd(x)$d
[1] 9.707537 8.199827 7.982888 7.257286 6.235182
> svd(x)$v

[,1] [,2] [,3] [,4] [,5]
[1,] -0.17946375 0.08268613 -0.01644895 -0.98010572 -0.00883063
[2,] -0.78963831 0.34694371 0.34328503 0.16509457 0.33316749
[3,] 0.21305901 0.91839439 -0.25083926 0.04461477 -0.21505068
[4,] 0.54504905 0.16843629 0.53318714 -0.10009622 0.61663844
[5,] -0.04232602 -0.03120945 -0.73121540 0.01126215 0.68002329

37

The Distributed SVD Fit

The code produced in the master setup is:
library(distcomp)
defn <-
structure(list(id = structure(1L, .Label = "db19ec158c9d5218", class = "factor"),

compType = structure(1L, .Label = "RankKSVD", class = "factor"),
projectName = structure(1L, .Label = "SVDTest", class = "factor"),
projectDesc = structure(1L, .Label = "SVD Test Example", class = "factor"),
rank = 2L, ncol = 5L), .Names = c("id", "compType", "projectName",

"projectDesc", "rank", "ncol"), row.names = c(NA, -1L), class = "data.frame")
sites <-
structure(c("http://127.0.0.1:3978/ocpu", "http://127.0.0.1:3978/ocpu",
"http://127.0.0.1:3978/ocpu"), .Names = c("site1", "site2", "site3"
))
siteDataFiles <-
c("site1.rds", "site2.rds", "site3.rds")
siteNames <-
c("site1", "site2", "site3")
master <- svdMaster$new(defnId = defn$id, localServer=TRUE)
for (i in seq.int(length(sites))) {

master$addSite(siteNames[i], sites[i], dataFileName=siteDataFiles[i])
}
result <- master$run(k=defn$rank)
print(result)

38

The SVD Output

If you run that program, after a while, it spits out the following:
$v

[,1] [,2]
[1,] 0.17947030 0.08275684
[2,] 0.78969198 0.34634459
[3,] -0.21294972 0.91875219
[4,] -0.54501407 0.16784298
[5,] 0.04229739 -0.03032954

$d
[1] 9.707451 8.200043

If you actually ask for k = 5, it gives:
> result$d
[1] 9.707451 8.200043 7.982650 7.257355 6.235351

> result$v
[,1] [,2] [,3] [,4] [,5]

[1,] 0.17947030 0.08275684 0.0165604 0.98008722 -0.008933396
[2,] 0.78969198 0.34634459 -0.3437723 -0.16504730 0.333181988
[3,] -0.21294972 0.91875219 0.2496210 -0.04479619 -0.214978886
[4,] -0.54501407 0.16784298 -0.5334277 0.10025749 0.616612820
[5,] 0.04229739 -0.03032954 0.7312254 -0.01140918 0.680060781

39

Data in Databases

The examples shown here use CSV files for demonstration. But the
package can use data in databases as well, for example Redcap.
This approach can be replicated for any database, where instead of
uploading a CSV file, one would specify database parameters.

▶ During setup, credentials need to be supplied
▶ Data can be directly updated in the databases any time
▶ Some additional checks and balances are needed

The approach can be replicated for any database the only difference
being database URL and credentials will be needed during setup.

40

Some References

▶ Software for Distributed Computation on Medical Databases:
A Demonstration Project, Journal of Statistical Software, Vol.
77 (2017).

▶ CRAN package distcomp

